Zur Kurzanzeige

dc.contributor.authorCurbera, Guillermo P.
dc.contributor.authorOkada, Susumu
dc.contributor.authorRicker, Werner J.
dc.date.accessioned2025-12-15T10:00:42Z
dc.date.available2025-12-15T10:00:42Z
dc.date.issued2025-12
dc.identifier.urihttp://publications.mfo.de/handle/mfo/4353
dc.description[MSC 2020] (Primary) 44A15; 46E30; (Secondary) 47A53; 47B34en_US
dc.descriptionThe first and third authors acknowledge the support of the Mathematisches Forschungsinstitut Oberwolfach via the Oberwolfach Research Fellows program (March, 2025). The first author also acknowledges the support of PID2021-124332NB-C21 (FEDER(EU)/Ministerio de Ciencia e Innovación-Agencia Estatal de Investigación) and FQM-262 (Junta de Andalucía).en_US
dc.description.abstractThe finite Hilbert transform $T$ is a classical singular integral operator with its roots in aerodynamics, elasticity theory and image reconstruction. The setting has always been to consider $T$ as acting in those rearrangement invariant spaces $X$ over (−1, 1) which $T$ maps boundedly into itself (e.g., $L^p$ for 1 < $p$ < ∞), a setting which excludes $L^1$. Our aim is to go beyond boundedness and to address the case $X$ = $L^1$. For this, we need to consider $T$ as an unbounded operator on $L^1$. Is there a “suitable” domain for $T$? Yes. Remarkably, for $T$ acting on this domain, we prove a full inversion theorem, together with refined versions of both the Parseval and Poincaré-Bertrand formulae, which are crucial results needed for the proof. This domain, a somewhat unusual space, turns out to be a rather extensive subspace of $L^1$, fails to be an ideal and properly contains the Zygmund space $L$log$L$ (which is the largest ideal of functions that $T$ maps boundedly into $L^1$).en_US
dc.language.isoenen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesOberwolfach Preprints;2025-13
dc.subjectFinite Hilbert Transformen_US
dc.subjectAirfoil Equationen_US
dc.subjectInversion Formulaen_US
dc.subjectUnbounded Operatorsen_US
dc.titleInversion of the Unbounded Finite Hilbert Transform on $L^1$en_US
dc.typePreprinten_US
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.de
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.en
dc.identifier.doi10.14760/OWP-2025-13
local.series.idOWP-2025-13en_US
local.subject.msc44en_US
local.subject.msc46en_US
local.subject.msc47en_US


Dateien zu dieser Ressource

Thumbnail

Das Dokument erscheint in:

Zur Kurzanzeige