| dc.contributor.author | Curbera, Guillermo P. | |
| dc.contributor.author | Okada, Susumu | |
| dc.contributor.author | Ricker, Werner J. | |
| dc.date.accessioned | 2025-12-15T10:00:42Z | |
| dc.date.available | 2025-12-15T10:00:42Z | |
| dc.date.issued | 2025-12 | |
| dc.identifier.uri | http://publications.mfo.de/handle/mfo/4353 | |
| dc.description | [MSC 2020] (Primary) 44A15; 46E30; (Secondary) 47A53; 47B34 | en_US |
| dc.description | The first and third authors acknowledge the support of the Mathematisches Forschungsinstitut Oberwolfach via the Oberwolfach Research Fellows program (March, 2025). The first author also acknowledges the support of PID2021-124332NB-C21 (FEDER(EU)/Ministerio de Ciencia e Innovación-Agencia Estatal de Investigación) and FQM-262 (Junta de Andalucía). | en_US |
| dc.description.abstract | The finite Hilbert transform $T$ is a classical singular integral operator with its roots in aerodynamics, elasticity theory and image reconstruction. The setting has always been to consider $T$ as acting in those rearrangement invariant spaces $X$ over (−1, 1) which $T$ maps boundedly into itself (e.g., $L^p$ for 1 < $p$ < ∞), a setting which excludes $L^1$. Our aim is to go beyond boundedness and to address the case $X$ = $L^1$. For this, we need to consider $T$ as an unbounded operator on $L^1$. Is there a “suitable” domain for $T$? Yes. Remarkably, for $T$ acting on this domain, we prove a full inversion theorem, together with refined versions of both the Parseval and Poincaré-Bertrand formulae, which are crucial results needed for the proof. This domain, a somewhat unusual space, turns out to be a rather extensive subspace of $L^1$, fails to be an ideal and properly contains the Zygmund space $L$log$L$ (which is the largest ideal of functions that $T$ maps boundedly into $L^1$). | en_US |
| dc.language.iso | en | en_US |
| dc.publisher | Mathematisches Forschungsinstitut Oberwolfach | en_US |
| dc.relation.ispartofseries | Oberwolfach Preprints;2025-13 | |
| dc.subject | Finite Hilbert Transform | en_US |
| dc.subject | Airfoil Equation | en_US |
| dc.subject | Inversion Formula | en_US |
| dc.subject | Unbounded Operators | en_US |
| dc.title | Inversion of the Unbounded Finite Hilbert Transform on $L^1$ | en_US |
| dc.type | Preprint | en_US |
| dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | de |
| dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | en |
| dc.identifier.doi | 10.14760/OWP-2025-13 | |
| local.series.id | OWP-2025-13 | en_US |
| local.subject.msc | 44 | en_US |
| local.subject.msc | 46 | en_US |
| local.subject.msc | 47 | en_US |