Zur Kurzanzeige

dc.contributor.authorRué, Juanjo
dc.contributor.editorJahns, Sophia
dc.contributor.editorCederbaum, Carla
dc.date.accessioned2015-12-05T11:44:49Z
dc.date.available2015-12-05T11:44:49Z
dc.date.issued2015
dc.identifier.urihttp://publications.mfo.de/handle/mfo/443
dc.description.abstractImagine you have a cutout from a piece of squared paper and a pile of dominoes, each of which can cover exactly two squares of the squared paper. How many different ways are there to cover the entire paper cutout with dominoes? One specific paper cutout can be mathematically described as the so-called Aztec Diamond, and a way to cover it with dominoes is a domino tiling. In this snapshot we revisit some of the seminal combinatorial ideas used to enumerate the number of domino tilings of the Aztec Diamond. The existing connection with the study of the so-called alternating-sign matrices is also explored.en_US
dc.language.isoen_USen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesSnapshots of modern mathematics from Oberwolfach; 16/2015
dc.rightsAttribution-ShareAlike 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/*
dc.titleDomino tilings of the Aztec diamonden_US
dc.typeArticleen_US
dc.identifier.doi10.14760/SNAP-2015-016-EN
local.series.idSNAP-2015-016-EN
local.subject.snapshotDiscrete Mathematics and Foundations
local.subject.snapshotProbability Theory and Statistics
dc.identifier.urnurn:nbn:de:101:1-201512081057
dc.identifier.ppn1653442239


Dateien zu dieser Ressource

Thumbnail

Das Dokument erscheint in:

Zur Kurzanzeige

Attribution-ShareAlike 4.0 International
Solange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: Attribution-ShareAlike 4.0 International