dc.contributor.author | Krähmer, Ulrich | |
dc.contributor.editor | Tokus, Sabiha | |
dc.contributor.editor | Cederbaum, Carla | |
dc.date.accessioned | 2015-12-06T11:44:49Z | |
dc.date.available | 2015-12-06T11:44:49Z | |
dc.date.issued | 2015 | |
dc.identifier.uri | http://publications.mfo.de/handle/mfo/444 | |
dc.description.abstract | An operad is an abstract mathematical tool encoding operations on specific mathematical structures. It finds applications in many areas of mathematics and related fields. This snapshot explains the concept of an operad and of an algebra over an operad, with a view towards a conjecture formulated by the mathematician Pierre Deligne. Deligne’s (by now proven) conjecture also gives deep inights into mathematical physics. | en_US |
dc.language.iso | en_US | en_US |
dc.publisher | Mathematisches Forschungsinstitut Oberwolfach | en_US |
dc.relation.ispartofseries | Snapshots of modern mathematics from Oberwolfach; 17/2015 | |
dc.rights | Attribution-ShareAlike 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by-sa/4.0/ | * |
dc.title | From computer algorithms to quantum field theory: an introduction to operads | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.14760/SNAP-2015-017-EN | |
local.series.id | SNAP-2015-017-EN | |
local.subject.snapshot | Algebra and Number Theory | |
local.subject.snapshot | Geometry and Topology | |
dc.identifier.urn | urn:nbn:de:101:1-201512081065 | |
dc.identifier.ppn | 1653442395 | |