Show simple item record

dc.contributor.authorHolm, Thorsten
dc.contributor.editorTokus, Sabiha
dc.contributor.editorCederbaum, Carla
dc.date.accessioned2015-04-23T11:44:50Z
dc.date.available2015-04-23T11:44:50Z
dc.date.issued2015
dc.identifier.urihttp://publications.mfo.de/handle/mfo/447
dc.description.abstractFriezes have occured as architectural ornaments for many centuries. In this snapshot, we consider the mathematical analogue of friezes as introduced in the 1970s by Conway and Coxeter. Recently, infinite versions of such friezes have appeared in current research. We are going to describe them and explain how they can be classified using some nice geometric pictures.en_US
dc.language.isoen_USen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesSnapshots of modern mathematics from Oberwolfach; 4/2015
dc.rightsAttribution-NonCommercial-ShareAlike 3.0 Unported*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/*
dc.titleFriezes and tilingsen_US
dc.typeArticleen_US
dc.identifier.doi10.14760/SNAP-2015-004-EN
local.series.idSNAP-2015-004-EN
local.subject.snapshotAlgebra and Number Theory
local.subject.snapshotDiscrete Mathematics and Foundations
dc.identifier.urnurn:nbn:de:101:1-201505123778
dc.identifier.ppn1656727307


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-ShareAlike 3.0 Unported
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-ShareAlike 3.0 Unported