Show simple item record

dc.contributor.authorSzemberg, Tomasz
dc.contributor.authorSzpond, Justyna
dc.contributor.editorNiediek, Johannes
dc.contributor.editorCederbaum, Carla
dc.date.accessioned2016-03-23T11:45:13Z
dc.date.available2016-03-23T11:45:13Z
dc.date.issued2016
dc.identifier.urihttp://publications.mfo.de/handle/mfo/458
dc.description.abstractMathematicians routinely speak two languages: the language of geometry and the language of algebra. When translating between these languages, curves and lines become sets of polynomials called “ideals”. Often there are several possible translations. Then the mystery is how these possible translations relate to each other. We present how geometry itself gives insights into this question.en_US
dc.language.isoen_USen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesSnapshots of modern mathematics from Oberwolfach; 2016,03
dc.rightsAttribution-ShareAlike 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/*
dc.titleOn the containment problemen_US
dc.typeArticleen_US
dc.identifier.doi10.14760/SNAP-2016-003-EN
local.series.idSNAP-2016-003-EN
local.subject.snapshotAlgebra and Number Theory
dc.identifier.urnurn:nbn:de:101:1-201603113112
dc.identifier.ppn1655532049


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-ShareAlike 4.0 International
Except where otherwise noted, this item's license is described as Attribution-ShareAlike 4.0 International