• The Algebraic Statistics of an Oberwolfach Workshop 

      [SNAP-2018-001-EN] Seigal, Anna (Mathematisches Forschungsinstitut Oberwolfach, 2018-02-27)
      Algebraic Statistics builds on the idea that statistical models can be understood via polynomials. Many statistical models are parameterized by polynomials in the model parameters; others are described implicitly by ...
    • Analogue mathematical instruments: Examples from the “theoretical dynamics” group (France, 1948–1964) 

      [SNAP-2019-012-EN] Petitgirard, Loïc (Mathematisches Forschungsinstitut Oberwolfach, 2019-11-21)
      Throughout the history of dynamical systems, instruments have been used to calculate and visualize (approximate) solutions of differential equations. Here we describe the approach of a group of physicists and engineers ...
    • Biological shape analysis with geometric statistics and learning 

      [SNAP-2022-008-EN] Utpala, Saiteja; Miolane, Nina (Mathematisches Forschungsinstitut Oberwolfach, 2022-10-25)
      The advances in biomedical imaging techniques have enabled us to access the 3D shapes of a variety of structures: organs, cells, proteins. Since biological shapes are related to physiological functions, shape data may hold ...
    • Closed geodesics on surfaces and Riemannian manifolds 

      [SNAP-2017-005-EN] Radeschi, Marco (Mathematisches Forschungsinstitut Oberwolfach, 2017-12-07)
      Geodesics are special paths in surfaces and so-called Riemannian manifolds which connect close points in the shortest way. Closed geodesics are geodesics which go back to where they started. In this snapshot we talk ...
    • Diophantine equations and why they are hard 

      [SNAP-2019-003-EN] Pasten, Hector (Mathematisches Forschungsinstitut Oberwolfach, 2019-04-24)
      Diophantine equations are polynomial equations whose solutions are required to be integer numbers. They have captured the attention of mathematicians during millennia and are at the center of much of contemporary research. ...
    • Emergence in biology and social sciences 

      [SNAP-2022-001-EN] Hoffmann, Franca; Merino-Aceituno, Sara (Mathematisches Forschungsinstitut Oberwolfach, 2022-03-31)
      Mathematics is the key to linking scientific knowledge at different scales: from microscopic to macroscopic dynamics. This link gives us understanding on the emergence of observable patterns like flocking of birds, leaf ...
    • Finite geometries: pure mathematics close to applications 

      [SNAP-2021-010-EN] Storme, Leo (Mathematisches Forschungsinstitut Oberwolfach, 2021-09-22)
      The research field of finite geometries investigates structures with a finite number of objects. Classical examples include vector spaces, projective spaces, and affine spaces over finite fields. Although many of these ...
    • Geometry behind one of the Painlevé III differential equations 

      [SNAP-2018-010-EN] Hertling, Claus (Mathematisches Forschungsinstitut Oberwolfach, 2018-06-20)
      The Painlevé equations are second order differential equations, which were first studied more than 100 years ago. Nowadays they arise in many areas in mathematics and mathematical physics. This snapshot discusses the ...
    • Jewellery from tessellations of hyperbolic space 

      [SNAP-2022-005-EN] Gangl, Herbert (Mathematisches Forschungsinstitut Oberwolfach, 2022-06-02)
      In this snapshot, we will first give an introduction to hyperbolic geometry and we will then show how certain matrix groups of a number-theoretic origin give rise to a large variety of interesting tessellations of 3-dimensional ...
    • Reflections on hyperbolic space 

      [SNAP-2021-007-EN] Haensch, Anna (Mathematisches Forschungsinstitut Oberwolfach, 2021-08-24)
      In school, we learn that the interior angles of any triangle sum up to pi. However, there exist spaces different from the usual Euclidean space in which this is not true. One of these spaces is the ''hyperbolic space'', ...
    • Representations and degenerations 

      [SNAP-2022-007-EN] Dumanski, Ilya; Kiritchenko, Valentina (Mathematisches Forschungsinstitut Oberwolfach, 2022-10-25)
      In this snapshot, we explain two important mathematical concepts (representation and degeneration) in elementary terms. We will focus on the simplest meaningful examples, and motivate both concepts by study of symmetry.
    • The Robinson–Schensted algorithm 

      [SNAP-2022-002-EN] Thomas, Hugh (Mathematisches Forschungsinstitut Oberwolfach, 2022-05-06)
      I am going to describe the Robinson–Schensted algorithm which transforms a permutation of the numbers from 1 to n into a pair of combinatorial objects called “standard Young tableaux”. I will then say a little bit about a ...
    • Searching for the monster in the trees 

      [SNAP-2022-003-EN] Craven, David A. (Mathematisches Forschungsinstitut Oberwolfach, 2022-04-13)
      The Monster finite simple group is almost unimaginably large, with about 8 × 1053 elements in it. Trying to understand such an immense object requires both theory and computer programs. In this snapshot, we discuss finite ...
    • Seeing through rock with help from optimal transport 

      [SNAP-2022-004-EN] Frederick, Christina; Yang, Yunan (Mathematisches Forschungsinstitut Oberwolfach, 2022-05-06)
      Geophysicists and mathematicians work together to detect geological structures located deep within the earth by measuring and interpreting echoes from manmade earthquakes. This inverse problem naturally involves the ...
    • Solving inverse problems with Bayes' theorem 

      [SNAP-2022-006-EN] Latz, Jonas; Sprungk, Björn (Mathematisches Forschungsinstitut Oberwolfach, 2022-09-05)
      The goal of inverse problems is to find an unknown parameter based on noisy data. Such problems appear in a wide range of applications including geophysics, medicine, and chemistry. One method of solving them is known as ...
    • Solving quadratic equations in many variables 

      [SNAP-2017-012-EN] Tignol, Jean-Pierre (Mathematisches Forschungsinstitut Oberwolfach, 2017-12-30)
      Fields are number systems in which every linear equation has a solution, such as the set of all rational numbers $\mathbb{Q}$ or the set of all real numbers $\mathbb{R}$. All fields have the same properties in relation ...
    • Spaces of Riemannian metrics 

      [SNAP-2017-010-ENSNAP-2017-010-ES] Bustamante, Mauricio; Kordaß, Jan-Bernhard (Mathematisches Forschungsinstitut Oberwolfach, 2017-12-28)
      Riemannian metrics endow smooth manifolds such as surfaces with intrinsic geometric properties, for example with curvature. They also allow us to measure quantities like distances, angles and volumes. These are the ...
    • A tale of three curves 

      [SNAP-2022-010-EN] Balakrishnan, Jennifer S. (Mathematisches Forschungsinstitut Oberwolfach, 2022-10-27)
      In this snapshot, we give a survey of some problems in the study of rational points on higher genus curves, discussing questions ranging from the era of the ancient Greeks to a few posed by mathematicians of the 20th ...
    • Topological recursion 

      [SNAP-2018-002-EN] Sułkowski, Piotr (Mathematisches Forschungsinstitut Oberwolfach, 2018-03-05)
      In this snapshot we present the concept of topological recursion – a new, surprisingly powerful formalism at the border of mathematics and physics, which has been actively developed within the last decade. After introducing ...
    • Touching the transcendentals: tractional motion from the bir th of calculus to future perspectives 

      [SNAP-2019-013-EN] Milici, Pietro (Mathematisches Forschungsinstitut Oberwolfach, 2019-11-21)
      When the rigorous foundation of calculus was developed, it marked an epochal change in the approach of mathematicians to geometry. Tools from geometry had been one of the foundations of mathematics until the 17th century ...