Browsing by MFO Series ID "OWP-2008-17"
Now showing items 1-1 of 1
-
A note on k[z]-Automorphisms in Two Variables
[OWP-2008-17] (Mathematisches Forschungsinstitut Oberwolfach, 2008)We prove that for a polynomial $f \in k[x, y, z]$ equivalent are: (1)$f$ is a $k[z]$-coordinate of $k[z][x,y]$, and (2) $k[x, y, z]/(f)\cong k^[2]$ and $f(x,y,a)$ is a coordinate in $k[x,y]$ for some $a \in k$. This solves ...