A note on k[z]-Automorphisms in Two Variables

View/ Open
Date
2008MFO Scientific Program
OWLF 2007Series
Oberwolfach Preprints;2008,17Author
Edo, Eric
Essen, Arno van den
Maubach, Stefan
Metadata
Show full item recordOWP-2008-17
Abstract
We prove that for a polynomial $f \in k[x, y, z]$ equivalent are: (1)$f$ is a $k[z]$-coordinate of $k[z][x,y]$, and (2) $k[x, y, z]/(f)\cong k^[2]$ and $f(x,y,a)$ is a coordinate in $k[x,y]$ for some $a \in k$. This solves a special case of the Abhyankar-Sathaye conjecture. As a consequence we see that a coordinate $f \in k[x,y,z]$ which is also a $k(z)$-coordinate, is a $k[z]$-coordinate. We discuss a method for constructing automorphisms of $k[x, y, z]$, and observe that the Nagata automorphism occurs naturally as the first non-trivial automorphism obtained by this method -essentially linking Nagata with a non-tame $R$-automorphism of $R[x]$, where $R=k[z]/(z^2)$.