• Calculating conjugacy classes in Sylow p-subgroups of finite Chevalley groups of rank six and seven 

      [OWP-2013-10] Goodwin, Simon M.; Mosch, Peter; Röhrle, Gerhard (Mathematisches Forschungsinstitut Oberwolfach, 2013-04-10)
      Let $G(q)$ be a finite Chevalley group, where $q$ is a power of a good prime $p$, and let $U(q)$ be a Sylow $p$-subgroup of $G(q)$. Then a generalized version of a conjecture of Higman asserts that the number $k(U(q))$ of ...
    • Categoric Aspects of Authentication 

      [OWP-2012-05] Schillewaert, Jeroen; Thas, Koen (Mathematisches Forschungsinstitut Oberwolfach, 2012-04-24)
    • Cocharacter-closure and spherical buildings 

      [OWP-2015-12] Bate, Michael; Herpel, Sebastian; Martin, Benjamin; Röhrle, Gerhard (Mathematisches Forschungsinstitut Oberwolfach, 2015-07-29)
      Let $k$ be a field, let $G$ be a reductive $k$-group and $V$ an affine $k$-variety on which $G$ acts. In this note we continue our study of the notion of cocharacter-closed $G(k)$-orbits in $V$. In earlier work we used a ...
    • Cocharacter-Closure and the Rational Hilbert-Mumford Theorem 

      [OWP-2014-16] Bate, Michael; Herpel, Sebastian; Martin, Benjamin; Röhrle, Gerhard (Mathematisches Forschungsinstitut Oberwolfach, 2014-12-20)
      For a field $k$, let $G$ be a reductive $k$-group and $V$ an affine $k$-variety on which $G$ acts. Using the notion of cocharacter-closed $G(k)$-orbits in $V$ , we prove a rational version of the celebrated Hilbert-Mumford ...
    • Computing Congruence Quotients of Zariski Dense Subgroups 

      [OWP-2018-22] Detinko, Alla; Flannery, Dane; Hulpke, Alexander (Mathematisches Forschungsinstitut Oberwolfach, 2018-10-26)
      We obtain a computational realization of the strong approximation theorem. That is, we develop algorithms to compute all congruence quotients modulo rational primes of a finitely generated Zariski dense group $H \leq ...
    • A construction of hyperbolic Coxeter groups 

      [OWP-2010-04] Osajda, Damian (Mathematisches Forschungsinstitut Oberwolfach, 2010)
      We give a simple construction of Gromov hyperbolic Coxeter groups of arbitrarily large virtual cohomological dimension. Our construction provides new examples of such groups. Using this one can construct e.g. new groups ...
    • Experimenting with Zariski Dense Subgroups 

      [OWP-2017-31] Detinko, Alla; Flannery, Dane; Hulpke, Alexander (Mathematisches Forschungsinstitut Oberwolfach, 2017-10-28)
      We give a method to describe all congruence images of a finitely generated Zariski dense group $H\leq SL(n, \mathbb{R})$. The method is applied to obtain efficient algorithms for solving this problem in odd prime degree ...
    • Freeness of Multi-Reflection Arrangements via Primitive Vector Fields 

      [OWP-2017-10] Hoge, Torsten; Mano, Toshiyuki; Röhrle, Gerhard; Stump, Christian (Mathematisches Forschungsinstitut Oberwolfach, 2017-04-20)
      In 2002, Terao showed that every reflection multi-arrangement of a real reflection group with constant multiplicity is free by providing a basis of the module of derivations. We first generalize Terao's result to ...
    • G-complete reducibility in non-connected groups 

      [OWP-2013-09] Bate, Michael; Herpel, Sebastian; Martin, Benjamin; Röhrle, Gerhard (Mathematisches Forschungsinstitut Oberwolfach, 2013-04-10)
      In this paper we present an algorithm for determining whether a subgroup $H$ of a non-connected reductive group $G$ is $G$-completely reducible. The algorithm consists of a series of reductions; at each step, we perform ...
    • Ghost Algebras of Double Burnside Algebras via Schur Functors 

      [OWP-2012-09] Boltje, Robert; Danz, Susanne (Mathematisches Forschungsinstitut Oberwolfach, 2012-07-03)
      For a finite group $G$, we introduce a multiplication on the $\mathbb{Q}$-vector space with basis $\mathscr{S}_{G\times G}$, the set of subgroups of ${G \times G}$. The resulting $\mathbb{Q}$-algebra $\tilde{A}$ can be ...
    • An inductive approach to coxeter arrangements and solomon's descent algebra 

      [OWP-2011-16] Douglass, J. Matthew; Pfeiffer, Götz; Röhrle, Gerhard (Mathematisches Forschungsinstitut Oberwolfach, 2011-05-17)
      In our recent paper [3], we claimed that both the group algebra of a finite Coxeter group W as well as the Orlik-Solomon algebra of W can be decomposed into a sum of induced one-dimensional representations of centralizers, ...
    • Inductive Freeness of Ziegler’s Canonical Multiderivations for Reflection Arrangements 

      [OWP-2017-14] Hoge, Torsten; Röhrle, Gerhard (Mathematisches Forschungsinstitut Oberwolfach, 2017-04-30)
      Let $A$ be a free hyperplane arrangement. In 1989, Ziegler showed that the restriction $A''$ of $A$ to any hyperplane endowed with the natural multiplicity is then a free multiarrangement. We initiate a study of the stronger ...
    • Invariant Four-forms and Symmetric Pairs 

      [OWP-2012-03] Moroianu, Andrei; Semmelmann, Uwe (Mathematisches Forschungsinstitut Oberwolfach, 2012-04-24)
      We give criteria for real, complex and quaternionic representations to define $s$-representations, focusing on exceptional Lie algebras defined by spin representations. As applications, we obtain the classification of ...
    • Linear Syzygies, Hyperbolic Coxeter Groups and Regularity 

      [OWP-2017-15] Constantinescu, Alexandru; Kahle, Thomas; Varbaro, Matteo (Mathematisches Forschungsinstitut Oberwolfach, 2017-05-24)
      We build a new bridge between geometric group theory and commutative algebra by showing that the virtual cohomological dimension of a Coxeter group is essentially the regularity of the Stanley–Reisner ring of its nerve. ...
    • The Magic Square of Reflections and Rotations 

      [OWP-2018-13] Buchweitz, Ragnar-Olaf; Faber, Eleonore; Ingalls, Colin (Mathematisches Forschungsinstitut Oberwolfach, 2018-07-01)
      We show how Coxeter’s work implies a bijection between complex reflection groups of rank two and real reflection groups in 0(3). We also consider this magic square of reflections and rotations in the framework of Clifford ...
    • New representations of matroids and generalizations 

      [OWP-2011-18] Izhakian, Zur; Rhodes, John L. (Mathematisches Forschungsinstitut Oberwolfach, 2011)
      We extend the notion of matroid representations by matrices over fields by considering new representations of matroids by matrices over finite semirings, more precisely over the boolean and the superboolean semirings. This ...
    • On commuting varieties of nilradicals of borel subalgebras of reductive lie algebras 

      [OWP-2012-14] Goodwin, Simon M.; Röhrle, Gerhard (Mathematisches Forschungsinstitut Oberwolfach, 2012-12-04)
      Let $G$ be a connected reductive algebraic group defined over an algebraically closed field $\mathbb{k}$ of characteristic zero. We consider the commuting variety $\mathcal{C}(\mathfrak{u})$ of the nilradical $\mathfrak{u}$ ...
    • On Generalizations of Kac-Moody Groups 

      [OWP-2010-06] Blok, Rieuwert J.; Hoffman, Corneliu (Mathematisches Forschungsinstitut Oberwolfach, 2010-03-10)
      In [7] we define a Curtis-Tits group as a certain generalization of a Kac-Moody group. We distinguish between orientable and non-orientable Curtis-Tits groups and identify all orientable Curtis-Tits groups as Kac-Moody ...
    • On the Complement of the Richardson Orbit 

      [OWP-2010-09] Baur, Karin; Hille, Lutz (Mathematisches Forschungsinstitut Oberwolfach, 2010-03-13)
      We consider parabolic subgroups of a general algebraic group over an algebraically closed field $k$ whose Levi part has exactly $t$ factors. By a classical theorem of Richardson, the nilradical of a parabolic subgroup $P$ ...
    • On the Invariants of the Cohomology of Complements of Coxeter Arrangements 

      [OWP-2018-21] Douglass, J. Matthew; Pfeiffer, Götz; Röhrle, Gerhard (Mathematisches Forschungsinstitut Oberwolfach, 2018-10-22)
      We refine Brieskorn's study of the cohomology of the complement of the reflection arrangement of a finite Coxeter group W. As a result we complete the verification of a conjecture by Felder and Veselov that gives an explicit ...