dc.contributor.author | Goodwin, Simon M. | |
dc.contributor.author | Mosch, Peter | |
dc.contributor.author | Röhrle, Gerhard | |
dc.date.accessioned | 2013-04-10T12:00:02Z | |
dc.date.accessioned | 2016-10-05T14:13:54Z | |
dc.date.available | 2013-04-10T12:00:02Z | |
dc.date.available | 2016-10-05T14:13:54Z | |
dc.date.issued | 2013-04-10 | |
dc.identifier.uri | http://publications.mfo.de/handle/mfo/1060 | |
dc.description | Research in Pairs 2012 | en_US |
dc.description.abstract | Let $G(q)$ be a finite Chevalley group, where $q$ is a power of a good prime $p$, and let $U(q)$ be a Sylow $p$-subgroup of $G(q)$. Then a generalized version of a conjecture of Higman asserts that the number $k(U(q))$ of conjugacy classes in $U(q)$ is given by a polynomial in $q$ with integer coefficients. In [12], the first and the third authors developed an algorithm to calculate the values of $k(U(q))$. By implementing it into a computer program using GAP, they were able to calculate $k(U(q))$ for $G$ of rank at most 5, thereby proving that for these cases $k(U(q))$ is given by a polynomial in $q$. In this paper we present some refinements and improvements of the algorithm that allow us to calculate the values of $k(U(q))$ for finite Chevalley groups of rank six and seven, except $E_7$. We observe that $k(U(q))$ is a polynomial, so that the generalized Higman conjecture holds for these groups. Moreover, if we write $k(U(q))$ as a polynomial in $q-1$, then the coefficients are non-negative. Under the assumption that $k(U(q))$ is a polynomial in $q-1$, we also give an explicit formula for the coefficients of $k(U(q))$ of degrees zero, one and two. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Mathematisches Forschungsinstitut Oberwolfach | en_US |
dc.relation.ispartofseries | Oberwolfach Preprints;2013,10 | |
dc.subject | Finite Chevalley Groups | en_US |
dc.subject | Sylow Subgroups | en_US |
dc.subject | Conjugacy Classes | en_US |
dc.title | Calculating conjugacy classes in Sylow p-subgroups of finite Chevalley groups of rank six and seven | en_US |
dc.type | Preprint | en_US |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | de |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | en |
dc.identifier.doi | 10.14760/OWP-2013-10 | |
local.scientificprogram | Research in Pairs 2012 | |
local.series.id | OWP-2013-10 | |
local.subject.msc | 20 | |
dc.identifier.urn | urn:nbn:de:101:1-2024031912382609811787 | |
dc.identifier.ppn | 1652237542 | |