dc.contributor.author | Edo, Eric | |
dc.contributor.author | Essen, Arno van den | |
dc.contributor.author | Maubach, Stefan | |
dc.date.accessioned | 2016-10-10T08:41:25Z | |
dc.date.available | 2016-10-10T08:41:25Z | |
dc.date.issued | 2008 | |
dc.identifier.uri | http://publications.mfo.de/handle/mfo/1222 | |
dc.description | OWLF 2007 | en_US |
dc.description.abstract | We prove that for a polynomial $f \in k[x, y, z]$ equivalent are: (1)$f$ is a $k[z]$-coordinate of $k[z][x,y]$, and (2) $k[x, y, z]/(f)\cong k^[2]$ and $f(x,y,a)$ is a coordinate in $k[x,y]$ for some $a \in k$. This solves a special case of the Abhyankar-Sathaye conjecture. As a consequence we see that a coordinate $f \in k[x,y,z]$ which is also a $k(z)$-coordinate, is a $k[z]$-coordinate. We discuss a method for constructing automorphisms of $k[x, y, z]$, and observe that the Nagata automorphism occurs naturally as the first non-trivial automorphism obtained by this method -essentially linking Nagata with a non-tame $R$-automorphism of $R[x]$, where $R=k[z]/(z^2)$. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Mathematisches Forschungsinstitut Oberwolfach | en_US |
dc.relation.ispartofseries | Oberwolfach Preprints;2008,17 | |
dc.title | A note on k[z]-Automorphisms in Two Variables | en_US |
dc.type | Preprint | en_US |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | de |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | en |
dc.identifier.doi | 10.14760/OWP-2008-17 | |
local.scientificprogram | OWLF 2007 | en_US |
local.series.id | OWP-2008-17 | |
dc.identifier.urn | urn:nbn:de:101:1-20081112144 | |
dc.identifier.ppn | 1647467861 | |