• Closed geodesics on surfaces and Riemannian manifolds 

      [SNAP-2017-005-EN] Radeschi, Marco (Mathematisches Forschungsinstitut Oberwolfach, 2017-12-07)
      Geodesics are special paths in surfaces and so-called Riemannian manifolds which connect close points in the shortest way. Closed geodesics are geodesics which go back to where they started. In this snapshot we talk ...
    • Computing the long term evolution of the solar system with geometric numerical integrators 

      [SNAP-2017-009-EN] Fiorelli Vilmart, Shaula; Vilmart, Gilles (Mathematisches Forschungsinstitut Oberwolfach, 2017-12-27)
      Simulating the dynamics of the Sun–Earth–Moon system with a standard algorithm yields a dramatically wrong solution, predicting that the Moon is ejected from its orbit. In contrast, a well chosen algorithm with the ...
    • Solving quadratic equations in many variables 

      [SNAP-2017-012-EN] Tignol, Jean-Pierre (Mathematisches Forschungsinstitut Oberwolfach, 2017-12-30)
      Fields are number systems in which every linear equation has a solution, such as the set of all rational numbers $\mathbb{Q}$ or the set of all real numbers $\mathbb{R}$. All fields have the same properties in relation ...
    • Spaces of Riemannian metrics 

      [SNAP-2017-010-EN] Bustamante, Mauricio; Kordaß, Jan-Bernhard (Mathematisches Forschungsinstitut Oberwolfach, 2017-12-28)
      Riemannian metrics endow smooth manifolds such as surfaces with intrinsic geometric properties, for example with curvature. They also allow us to measure quantities like distances, angles and volumes. These are the ...
    • Winkeltreue zahlt sich aus 

      [SNAP-2017-001-DE] Günther, Felix (Mathematisches Forschungsinstitut Oberwolfach, 2017-08-23)
      Nicht nur Seefahrerinnen, auch Computergrafikerinnen und Physikerinnen wissen Winkeltreue zu schätzen. Doch beschränkte Rechenkapazitäten und Vereinfachungen in theoretischen Modellen erfordern es, winkeltreue Abbildungen ...