Linear Syzygies, Hyperbolic Coxeter Groups and Regularity

Öffnen
Datum
2017-05-24MFO Scientific Program
Research in Pairs 2015Serie
Oberwolfach Preprints;2017,15Autor
Constantinescu, Alexandru
Kahle, Thomas
Varbaro, Matteo
Metadata
Zur LanganzeigeOWP-2017-15
Zusammenfassung
We build a new bridge between geometric group theory and commutative algebra by showing that the virtual cohomological dimension of a Coxeter group is essentially the regularity of the Stanley–Reisner ring of its nerve. Using this connection and techniques from the theory of hyperbolic Coxeter groups, we study the behavior of the Castelnuovo–Mumford regularity of square-free quadratic monomial ideals. We construct examples of such ideals which exhibit arbitrarily high regularity after linear syzygies for arbitrarily many steps. We give a doubly logarithmic bound on the regularity as a function of the number of variables if these ideals are Cohen–Macaulay.