Zur Kurzanzeige

dc.contributor.authorConstantinescu, Alexandru
dc.contributor.authorKahle, Thomas
dc.contributor.authorVarbaro, Matteo
dc.date.accessioned2017-09-07T08:02:49Z
dc.date.available2017-09-07T08:02:49Z
dc.date.issued2017-05-24
dc.identifier.urihttp://publications.mfo.de/handle/mfo/1303
dc.descriptionMSC: 13F55; 20F55; 13D02en_US
dc.descriptionResearch in Pairs 2015en_US
dc.description.abstractWe build a new bridge between geometric group theory and commutative algebra by showing that the virtual cohomological dimension of a Coxeter group is essentially the regularity of the Stanley–Reisner ring of its nerve. Using this connection and techniques from the theory of hyperbolic Coxeter groups, we study the behavior of the Castelnuovo–Mumford regularity of square-free quadratic monomial ideals. We construct examples of such ideals which exhibit arbitrarily high regularity after linear syzygies for arbitrarily many steps. We give a doubly logarithmic bound on the regularity as a function of the number of variables if these ideals are Cohen–Macaulay.en_US
dc.language.isoenen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesOberwolfach Preprints;2017,15
dc.titleLinear Syzygies, Hyperbolic Coxeter Groups and Regularityen_US
dc.typePreprinten_US
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.de
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.en
dc.identifier.doi10.14760/OWP-2017-15
local.scientificprogramResearch in Pairs 2015en_US
local.series.idOWP-2017-15
local.subject.msc13
local.subject.msc20
dc.identifier.urnurn:nbn:de:101:1-20170807712
dc.identifier.ppn1654049271


Dateien zu dieser Ressource

Thumbnail

Das Dokument erscheint in:

Zur Kurzanzeige