Show simple item record

dc.contributor.authorCavalieri, Renzo
dc.contributor.authorJohnson, Paul
dc.contributor.authorMarkwig, Hannah
dc.contributor.authorRanganathan, Dhruv
dc.date.accessioned2017-09-07T08:18:02Z
dc.date.available2017-09-07T08:18:02Z
dc.date.issued2017-07-17
dc.identifier.urihttp://publications.mfo.de/handle/mfo/1306
dc.descriptionResearch in Pairs 2015en_US
dc.description.abstractWe study the stationary descendant Gromov–Witten theory of toric surfaces by combining and extending a range of techniques – tropical curves, floor diagrams, and Fock spaces. A correspondence theorem is established between tropical curves and descendant invariants on toric surfaces using maximal toric degenerations. An intermediate degeneration is then shown to give rise to floor diagrams, giving a geometric interpretation of this well-known bookkeeping tool in tropical geometry. In the process, we extend floor diagram techniques to include descendants in arbitrary genus. These floor diagrams are then used to connect tropical curve counting to the algebra of operators on the bosonic Fock space, and are shown to coincide with the Feynman diagrams of appropriate operators. This extends work of a number of researchers, including Block–Göttche, Cooper–Pandharipande, and Block–Gathmann–Markwig.en_US
dc.language.isoenen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesOberwolfach Preprints;2017,18
dc.titleCounting Curves on Toric Surfaces Tropical Geometry & the Fock Spaceen_US
dc.typePreprinten_US
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.de
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.en
dc.identifier.doi10.14760/OWP-2017-18
local.scientificprogramResearch in Pairs 2015en_US
local.series.idOWP-2017-18
dc.identifier.urnurn:nbn:de:101:1-20170807744
dc.identifier.ppn1654051276


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record