Show simple item record

dc.contributor.authorBustamante, Mauricio
dc.contributor.authorKordaß, Jan-Bernhard
dc.contributor.editorRandecker, Anja
dc.contributor.editorJahns, Sophia
dc.contributor.editorCederbaum, Carla
dc.date.accessioned2018-03-05T14:55:11Z
dc.date.available2018-03-05T14:55:11Z
dc.date.issued2017-12-28
dc.identifier.urihttp://publications.mfo.de/handle/mfo/1352
dc.description.abstractRiemannian metrics endow smooth manifolds such as surfaces with intrinsic geometric properties, for example with curvature. They also allow us to measure quantities like distances, angles and volumes. These are the notions we use to characterize the “shape” of a manifold. The space of Riemannian metrics is a mathematical object that encodes the many possible ways in which we can geometrically deform the shape of a manifold.en_US
dc.language.isoenen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesSnapshots of modern mathematics from Oberwolfach;2017,10
dc.rightsAttribution-ShareAlike 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/*
dc.titleSpaces of Riemannian metricsen_US
dc.typeArticleen_US
dc.identifier.doi10.14760/SNAP-2017-010-EN
local.series.idSNAP-2017-010-EN
local.subject.snapshotGeometry and Topology


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-ShareAlike 4.0 International
Except where otherwise noted, this item's license is described as Attribution-ShareAlike 4.0 International