dc.contributor.author | Bustamante, Mauricio | |
dc.contributor.author | Kordaß, Jan-Bernhard | |
dc.contributor.editor | Randecker, Anja | |
dc.contributor.editor | Jahns, Sophia | |
dc.contributor.editor | Cederbaum, Carla | |
dc.date.accessioned | 2018-03-05T14:55:11Z | |
dc.date.available | 2018-03-05T14:55:11Z | |
dc.date.issued | 2017-12-28 | |
dc.identifier.uri | http://publications.mfo.de/handle/mfo/1352 | |
dc.description.abstract | Riemannian metrics endow smooth manifolds such as
surfaces with intrinsic geometric properties, for example
with curvature. They also allow us to measure
quantities like distances, angles and volumes. These
are the notions we use to characterize the "shape" of
a manifold. The space of Riemannian metrics is a
mathematical object that encodes the many possible
ways in which we can geometrically deform the shape
of a manifold. | en_US |
dc.description.abstract | [Also available in Spanish] | |
dc.language.iso | en | en_US |
dc.publisher | Mathematisches Forschungsinstitut Oberwolfach | en_US |
dc.relation.ispartofseries | Snapshots of modern mathematics from Oberwolfach;2017,10 | |
dc.relation.hasversion | 10.14760/SNAP-2017-010-ES | |
dc.rights | Attribution-ShareAlike 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by-sa/4.0/ | * |
dc.title | Spaces of Riemannian metrics | en_US |
dc.title.alternative | Espacios de métricas Riemannianas | es |
dc.type | Article | en_US |
dc.identifier.doi | 10.14760/SNAP-2017-010-EN | |
local.series.id | SNAP-2017-010-EN | |
local.subject.snapshot | Geometry and Topology | |
dc.identifier.urn | urn:nbn:de:101:1-201803066922 | |
dc.identifier.ppn | 1653326670 | |