Show simple item record

dc.contributor.authorHertling, Claus
dc.contributor.editorRandecker, Anja
dc.contributor.editorNiediek, Johannes
dc.contributor.editorCederbaum, Carla
dc.date.accessioned2018-06-20T13:56:33Z
dc.date.available2018-06-20T13:56:33Z
dc.date.issued2018-06-20
dc.identifier.urihttp://publications.mfo.de/handle/mfo/1367
dc.description.abstractThe Painlevé equations are second order differential equations, which were first studied more than 100 years ago. Nowadays they arise in many areas in mathematics and mathematical physics. This snapshot discusses the solutions of one of the Painlevé equations and presents old results on the asymptotics at two singular points and new results on the global behavior.en_US
dc.language.isoenen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesSnapshots of modern mathematics from Oberwolfach;2018,10
dc.rightsAttribution-ShareAlike 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/*
dc.titleGeometry behind one of the Painlevé III differential equationsen_US
dc.typeArticleen_US
dc.identifier.doi10.14760/SNAP-2018-010-EN
local.series.idSNAP-2018-010-ENen_US
local.subject.snapshotAnalysisen_US
local.subject.snapshotGeometry and Topologyen_US
dc.identifier.urnurn:nbn:de:101:1-2018062108593275617893
dc.identifier.ppn165759212X


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-ShareAlike 4.0 International
Except where otherwise noted, this item's license is described as Attribution-ShareAlike 4.0 International