dc.contributor.author | Hertling, Claus | |
dc.contributor.editor | Randecker, Anja | |
dc.contributor.editor | Niediek, Johannes | |
dc.contributor.editor | Cederbaum, Carla | |
dc.date.accessioned | 2018-06-20T13:56:33Z | |
dc.date.available | 2018-06-20T13:56:33Z | |
dc.date.issued | 2018-06-20 | |
dc.identifier.uri | http://publications.mfo.de/handle/mfo/1367 | |
dc.description.abstract | The Painlevé equations are second order differential
equations, which were first studied more than 100
years ago. Nowadays they arise in many areas in
mathematics and mathematical physics. This snapshot
discusses the solutions of one of the Painlevé
equations and presents old results on the asymptotics
at two singular points and new results on the global
behavior. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Mathematisches Forschungsinstitut Oberwolfach | en_US |
dc.relation.ispartofseries | Snapshots of modern mathematics from Oberwolfach;2018,10 | |
dc.rights | Attribution-ShareAlike 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by-sa/4.0/ | * |
dc.title | Geometry behind one of the Painlevé III differential equations | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.14760/SNAP-2018-010-EN | |
local.series.id | SNAP-2018-010-EN | en_US |
local.subject.snapshot | Analysis | en_US |
local.subject.snapshot | Geometry and Topology | en_US |
dc.identifier.urn | urn:nbn:de:101:1-2018062108593275617893 | |
dc.identifier.ppn | 165759212X | |