Show simple item record

dc.contributor.authorBuchweitz, Ragnar-Olaf
dc.contributor.authorFaber, Eleonore
dc.contributor.authorIngalls, Colin
dc.date.accessioned2018-07-04T06:29:50Z
dc.date.available2018-07-04T06:29:50Z
dc.date.issued2018-07-01
dc.identifier.urihttp://publications.mfo.de/handle/mfo/1372
dc.description.abstractWe show how Coxeter’s work implies a bijection between complex reflection groups of rank two and real reflection groups in 0(3). We also consider this magic square of reflections and rotations in the framework of Clifford algebras: we give an interpretation using (s)pin groups and explore these groups in small dimensions.en_US
dc.language.isoen_USen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesOberwolfach Preprints;2018,13
dc.subjectFinite reflection groupsen_US
dc.subjectClifford algebrasen_US
dc.subjectQuaternionsen_US
dc.subjectPin groupsen_US
dc.subjectMcKay correspondenceen_US
dc.titleThe Magic Square of Reflections and Rotationsen_US
dc.typePreprinten_US
dc.identifier.doi10.14760/OWP-2018-13
local.scientificprogramResearch in Pairs 2018en_US
local.series.idOWP-2018-13en_US
local.subject.msc20en_US
local.subject.msc15en_US
local.subject.msc11en_US
local.subject.msc14en_US
dc.identifier.urnurn:nbn:de:101:1-2018082111050750894138
dc.identifier.ppn1655291718


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record