• Domino tilings of the Aztec diamond 

      [SNAP-2015-016-EN] Rué, Juanjo (Mathematisches Forschungsinstitut Oberwolfach, 2015)
      Imagine you have a cutout from a piece of squared paper and a pile of dominoes, each of which can cover exactly two squares of the squared paper. How many different ways are there to cover the entire paper cutout with ...
    • Curriculum development in university mathematics: where mathematicians and education collide 

      [SNAP-2015-011-EN] Sangwin, Christopher J. (Mathematisches Forschungsinstitut Oberwolfach, 2015)
      This snapshot looks at educational aspects of the design of curricula in mathematics. In particular, we examine choices textbook authors have made when introducing the concept of the completness of the real numbers. Can ...
    • The mystery of sleeping sickness – why does it keep waking up? 

      [SNAP-2015-015-EN] Funk, Sebastian (Mathematisches Forschungsinstitut Oberwolfach, 2015)
      Sleeping sickness is a neglected tropical disease that affects rural populations in Africa. Deadly when untreated, it is being targeted for elimination through case finding and treatment. Yet, fundamental questions about ...
    • Special values of zeta functions and areas of triangles 

      [SNAP-2015-010-EN] Kramer, Jürg; Pippich, Anna-Maria von (Mathematisches Forschungsinstitut Oberwolfach, 2015)
      In this snapshot we give a glimpse of the interplay of special values of zeta functions and volumes of triangles. Special values of zeta functions and their generalizations arise in the computation of volumes of moduli ...
    • Billiards and flat surfaces 

      [SNAP-2015-001-ENSNAP-2015-001-DE] Davis, Diana (Mathematisches Forschungsinstitut Oberwolfach, 2015)
      [also available in German] Billiards, the study of a ball bouncing around on a table, is a rich area of current mathematical research. We discuss questions and results on billiards, and on the related topic of flat surfaces.
    • Darcy's law and groundwater flow modelling 

      [SNAP-2015-007-EN] Schweizer, Ben (Mathematisches Forschungsinstitut Oberwolfach, 2015)
      Formulations of natural phenomena are derived, sometimes, from experimentation and observation. Mathematical methods can be applied to expand on these formulations, and develop them into better models. In the year 1856, ...
    • Zero-dimensional symmetry 

      [SNAP-2015-003-EN] Willis, George (Mathematisches Forschungsinstitut Oberwolfach, 2015)
      This snapshot is about zero-dimensional symmetry. Thanks to recent discoveries we now understand such symmetry better than previously imagined possible. While still far from complete, a picture of zero-dimensional symmetry ...
    • Fokus-Erkennung bei Epilepsiepatienten mithilfe moderner Verfahren der Zeitreihenanalyse 

      [SNAP-2016-008-DE] Deistler, Manfred; Graef, Andreas (Mathematisches Forschungsinstitut Oberwolfach, 2016)
      Viele epileptische Anfälle entstehen in einer begrenzten Region im Gehirn, dem sogenannten Anfallsursprung. Eine chirurgische Entfernung dieser Region kann in vielen Fällen zu Anfallsfreiheit führen. Aus diesem Grund ist ...
    • Wie steuert man einen Kran? 

      [SNAP-2016-007-DE] Altmann, Robert; Heiland, Jan (Mathematisches Forschungsinstitut Oberwolfach, 2016)
      Die Steuerung einer Last an einem Kran ist ein technisch und mathematisch schwieriges Problem, da die Bewegung der Last nur indirekt beeinflusst werden kann. Anhand eines Masse-Feder-Systems illustrieren wir diese ...
    • Polyhedra and commensurability 

      [SNAP-2016-009-EN] Guglielmetti, Rafael; Jacquement, Matthieu (Mathematisches Forschungsinstitut Oberwolfach, 2016)
      This snapshot introduces the notion of commensurability of polyhedra. At its bottom, this concept can be developed from constructions with paper, scissors, and glue. Starting with an elementary example, we formalize it ...
    • The adaptive finite element method 

      [SNAP-2016-013-EN] Gallistl, Dietmar (Mathematisches Forschungsinstitut Oberwolfach, 2016)
      Computer simulations of many physical phenomena rely on approximations by models with a finite number of unknowns. The number of these parameters determines the computational effort needed for the simulation. On the other ...
    • High performance computing on smartphones 

      [SNAP-2016-006-EN] Patera, Anthony T.; Urban, Karsten (Mathematisches Forschungsinstitut Oberwolfach, 2016)
      Nowadays there is a strong demand to simulate even real-world engineering problems on small computing devices with very limited capacity, such as a smartphone. We explain, using a concrete example, how we can obtain a ...
    • Das Problem der Kugelpackung 

      [SNAP-2016-004-DE] Dostert, Maria; Krupp, Stefan; Rolfes, Jan Hendrik (Mathematisches Forschungsinstitut Oberwolfach, 2016)
      Wie würdest du Tennisbälle oder Orangen stapeln? Oder allgemeiner formuliert: Wie dicht lassen sich identische 3-dimensionale Objekte überschneidungsfrei anordnen? Das Problem, welches auch Anwendungen in der digitalen ...
    • Symmetry and characters of finite groups 

      [SNAP-2016-005-EN] Giannelli, Eugenio; Taylor, Jay (Mathematisches Forschungsinstitut Oberwolfach, 2016)
      Over the last two centuries mathematicians have developed an elegant abstract framework to study the natural idea of symmetry. The aim of this snapshot is to gently guide the interested reader through these ideas. In ...
    • Random sampling of domino and lozenge tilings 

      [SNAP-2016-002-EN] Fusy, Éric (Mathematisches Forschungsinstitut Oberwolfach, 2016)
      A grid region is (roughly speaking) a collection of “elementary cells” (squares, for example, or triangles) in the plane. One can “tile” these grid regions by arranging the cells in pairs. In this snapshot we review different ...
    • On the containment problem 

      [SNAP-2016-003-EN] Szemberg, Tomasz; Szpond, Justyna (Mathematisches Forschungsinstitut Oberwolfach, 2016)
      Mathematicians routinely speak two languages: the language of geometry and the language of algebra. When translating between these languages, curves and lines become sets of polynomials called “ideals”. Often there are ...
    • Prime tuples in function fields 

      [SNAP-2016-010-EN] Bary-Soroker, Lior (Mathematisches Forschungsinstitut Oberwolfach, 2016)
      How many prime numbers are there? How are they distributed among other numbers? These are questions that have intrigued mathematicians since ancient times. However, many questions in this area have remained unsolved, and ...
    • Swarming robots 

      [SNAP-2016-001-EN] Egerstedt, Magnus (Mathematisches Forschungsinstitut Oberwolfach, 2016)
      When lots of robots come together to form shapes, spread in an area, or move in one direction, their motion has to be planned carefully. We discuss how mathematicians devise strategies to help swarms of robots behave like ...
    • Footballs and donuts in four dimensions 

      [SNAP-2016-012-EN] Klee, Steven (Mathematisches Forschungsinstitut Oberwolfach, 2016)
      In this snapshot, we explore connections between the mathematical areas of counting and geometry by studying objects called simplicial complexes. We begin by exploring many familiar objects in our three dimensional world ...
    • The Willmore Conjecture 

      [SNAP-2016-011-EN] Nowaczyk, Nikolai (Mathematisches Forschungsinstitut Oberwolfach, 2016)
      The Willmore problem studies which torus has the least amount of bending energy. We explain how to think of a torus as a donut-shaped surface and how the intuitive notion of bending has been studied by mathematics over time.