Search
Now showing items 1-10 of 15
Fokus-Erkennung bei Epilepsiepatienten mithilfe moderner Verfahren der Zeitreihenanalyse
[SNAP-2016-008-DE] (Mathematisches Forschungsinstitut Oberwolfach, 2016)
Viele epileptische Anfälle entstehen in einer begrenzten Region im Gehirn, dem sogenannten Anfallsursprung. Eine chirurgische Entfernung dieser Region kann in vielen Fällen zu Anfallsfreiheit führen. Aus diesem Grund ist ...
High performance computing on smartphones
[SNAP-2016-006-EN] (Mathematisches Forschungsinstitut Oberwolfach, 2016)
Nowadays there is a strong demand to simulate even real-world engineering problems on small computing devices with very limited capacity, such as a smartphone. We explain, using a concrete example, how we can obtain a ...
Das Problem der Kugelpackung
[SNAP-2016-004-DE] (Mathematisches Forschungsinstitut Oberwolfach, 2016)
Wie würdest du Tennisbälle oder Orangen stapeln? Oder allgemeiner formuliert: Wie dicht lassen sich identische 3-dimensionale Objekte überschneidungsfrei anordnen? Das Problem, welches auch Anwendungen in der digitalen ...
Symmetry and characters of finite groups
[SNAP-2016-005-EN] (Mathematisches Forschungsinstitut Oberwolfach, 2016)
Over the last two centuries mathematicians have developed an elegant abstract framework to study the natural idea of symmetry. The aim of this snapshot is to gently guide the interested reader through these ideas. In ...
Random sampling of domino and lozenge tilings
[SNAP-2016-002-EN] (Mathematisches Forschungsinstitut Oberwolfach, 2016)
A grid region is (roughly speaking) a collection of “elementary cells” (squares, for example, or triangles) in the plane. One can “tile” these grid regions by arranging the cells in pairs. In this snapshot we review different ...
On the containment problem
[SNAP-2016-003-EN] (Mathematisches Forschungsinstitut Oberwolfach, 2016)
Mathematicians routinely speak two languages: the language of geometry and the language of algebra. When translating between these languages, curves and lines become sets of polynomials called “ideals”. Often there are ...
Footballs and donuts in four dimensions
[SNAP-2016-012-EN] (Mathematisches Forschungsinstitut Oberwolfach, 2016)
In this snapshot, we explore connections between the mathematical areas of counting and geometry by studying objects called simplicial complexes. We begin by exploring many familiar objects in our three dimensional world ...
Prime tuples in function fields
[SNAP-2016-010-EN] (Mathematisches Forschungsinstitut Oberwolfach, 2016)
How many prime numbers are there? How are they distributed among other numbers? These are questions that have intrigued mathematicians since ancient times. However, many questions in this area have remained unsolved, and ...
The Willmore Conjecture
[SNAP-2016-011-EN] (Mathematisches Forschungsinstitut Oberwolfach, 2016)
The Willmore problem studies which torus has the least amount of bending energy. We explain how to think of a torus as a donut-shaped surface and how the intuitive notion of bending has been studied by mathematics over time.
Swarming robots
[SNAP-2016-001-EN] (Mathematisches Forschungsinstitut Oberwolfach, 2016)
When lots of robots come together to form shapes, spread in an area, or move in one direction, their motion has to be planned carefully. We discuss how mathematicians devise strategies to help swarms of robots behave like ...