Zusammenfassung
All up-to-date engineering applications of advanced multi-phase materials necessitate a concurrent design of materials (including composition, processing routes, microstructures and properties) with structural components. Simulation-based material design requires an intensive interaction of solid state physics, material physics and chemistry, mathematics and information technology. Since mechanics of materials fuses many of the above fields, there is a pressing need for well founded quantitative analytical and numerical approaches to predict microstructure-process-property relationships taking into account hierarchical stationary or evolving microstructures. Owing to this hierarchy of length and time scales, novel approaches for describing/ modelling non-equilibrium material evolution with various degrees of resolution are crucial to linking solid mechanics with realistic material behavior. For example, approaches such as atomistic to continuum transitions (scale coupling), multiresolution numerics, and handshaking algorithms that pass information to models with different degrees of freedom are highly relevant in this context. Many of the topics addressed were dealt with in depth in this workshop.