Zur Kurzanzeige

Analysis, Geometry and Topology of Positive Scalar Curvature Metrics

dc.date.accessioned2019-10-24T14:56:22Z
dc.date.available2019-10-24T14:56:22Z
dc.date.issued2014
dc.identifier.urihttp://publications.mfo.de/handle/mfo/3426
dc.description.abstractOne of the fundamental problems in Riemannian geometry is to understand the relation of locally defined curvature invariants and global properties of smooth manifolds. This workshop was centered around the investigation of scalar curvature, addressing questions in global analysis, geometric topology, relativity and minimal surface theory.
dc.titleAnalysis, Geometry and Topology of Positive Scalar Curvature Metrics
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.de
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.en
dc.identifier.doi10.14760/OWR-2014-36
local.series.idOWR-2014-36
local.subject.msc19
local.subject.msc53
local.subject.msc35
local.subject.msc57
local.sortindex866
local.date-range03 Aug - 09 Aug 2014
local.workshopcode1432
local.workshoptitleAnalysis, Geometry and Topology of Positive Scalar Curvature Metrics
local.organizersBernd Ammann, Regensburg; Bernhard Hanke, Augsburg; Andre Neves, London
local.report-nameWorkshop Report 2014,36
local.opc-photo-id1432
local.publishers-doi10.4171/OWR/2014/36
local.ems-referenceAmmann Bernd, Hanke Bernhard, Neves André: Analysis, Geometry and Topology of Positive Scalar Curvature Metrics. Oberwolfach Rep. 11 (2014), 1991-2046. doi: 10.4171/OWR/2014/36


Dateien zu dieser Ressource

Thumbnail
Report

Das Dokument erscheint in:

Zur Kurzanzeige