Show simple item record

Combinatorics and Probability

dc.date.accessioned2019-10-24T15:17:02Z
dc.date.available2019-10-24T15:17:02Z
dc.date.issued2016
dc.identifier.urihttp://publications.mfo.de/handle/mfo/3526
dc.description.abstractFor the past few decades, Combinatorics and Probability Theory have had a fruitful symbiosis, each benefitting from and influencing developments in the other. Thus to prove the existence of designs, probabilistic methods are used, algorithms to factorize integers need combinatorics and probability theory (in addition to number theory), and the study of random matrices needs combinatorics. In the workshop a great variety of topics exemplifying this interaction were considered, including problems concerning designs, Cayley graphs, additive number theory, multiplicative number theory, noise sensitivity, random graphs, extremal graphs and random matrices.
dc.titleCombinatorics and Probability
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.de
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.en
dc.identifier.doi10.14760/OWR-2016-22
local.series.idOWR-2016-22
local.subject.msc60
local.subject.msc05
local.sortindex966
local.date-range17 Apr - 23 Apr 2016
local.workshopcode1616
local.workshoptitleCombinatorics and Probability
local.organizersBela Bollobás, Cambridge UK; Michael Krivelevich, Tel Aviv; Oliver Riordan, Oxford; Emo Welzl, Zürich
local.report-nameWorkshop Report 2016,22
local.opc-photo-id1616
local.publishers-doi10.4171/OWR/2016/22
local.ems-referenceBollobás Béla, Krivelevich Michael, Riordan Oliver, Welzl Emo: Combinatorics and Probability. Oberwolfach Rep. 13 (2016), 1189-1257. doi: 10.4171/OWR/2016/22


Files in this item

Thumbnail
Report

This item appears in the following Collection(s)

Show simple item record