Show simple item record

dc.contributor.authorArici, Francesca
dc.contributor.authorMesland, Bram
dc.contributor.editorMunday, Sara
dc.contributor.editorJahns, Sophia
dc.date.accessioned2022-01-24T11:26:17Z
dc.date.available2022-01-24T11:26:17Z
dc.date.issued2021-12-31
dc.identifier.urihttp://publications.mfo.de/handle/mfo/3912
dc.description.abstractGeometry draws its power from the abstract structures that govern the shapes found in the real world. These abstractions often provide deeper insights into the underlying mathematical objects. In this snapshot, we give a glimpse into how certain “curved spaces” called manifolds can be better understood by looking at the (complex) differentiable functions they admit.en_US
dc.language.isoenen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesSnapshots of modern mathematics from Oberwolfach;2021,09
dc.rightsAttribution-ShareAlike 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/*
dc.titleDescribing distance: from the plane to spectral triplesen_US
dc.typeArticleen_US
dc.identifier.doi10.14760/SNAP-2021-009-EN
local.series.idSNAP-2021-009-ENen_US
local.subject.snapshotGeometry and Topologyen_US
dc.identifier.urnurn:nbn:de:101:1-2022012608455181038683
dc.identifier.ppn1787776514


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-ShareAlike 4.0 International
Except where otherwise noted, this item's license is described as Attribution-ShareAlike 4.0 International