Zur Kurzanzeige

dc.contributor.authorNguyen, Thu Hien
dc.contributor.authorVishnyakova, Anna
dc.date.accessioned2022-12-15T07:27:02Z
dc.date.available2022-12-15T07:27:02Z
dc.date.issued2022-12-12
dc.identifier.urihttp://publications.mfo.de/handle/mfo/4001
dc.description.abstractWe find the intervals $[\alpha, \beta (\alpha)]$ such that if a univariate real polynomial or entire function $f(z) = a_0 + a_1 z + a_2 z^2 + \cdots $ with positive coefficients satisfy the conditions $ \frac{a_{k-1}^2}{a_{k-2}a_{k}} \in [\alpha, \beta(\alpha)]$ for all $k \geq 2,$ then $f$ belongs to the Laguerre-Pólya class. For instance, from J.I. Hutchinson's theorem, one can observe that $f$ belongs to the Laguerre-Pólya class (has only real zeros) when $q_k(f) \in [4, + \infty).$ We are interested in finding those intervals which are not subsets of $[4, + \infty).$en_US
dc.language.isoen_USen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesOberwolfach Preprints;2022-19
dc.subjectLaguerre-Pólya classen_US
dc.subjectLaguerre-Pólya class of type Ien_US
dc.subjectEntire functions of order zeroen_US
dc.subjectReal-rooted polynomialsen_US
dc.subjectHyperbolic polynomialsen_US
dc.titleHutchinson's Intervals and Entire Functions from the Laguerre-Pólya Classen_US
dc.typePreprinten_US
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.de
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.en
dc.identifier.doi10.14760/OWP-2022-19
local.scientificprogramOWLF 2022en_US
local.series.idOWP-2022-19en_US
local.subject.msc30en_US
local.subject.msc26en_US
dc.identifier.urnurn:nbn:de:101:1-2023011009103732817570
dc.identifier.ppn1830618342


Dateien zu dieser Ressource

Thumbnail

Das Dokument erscheint in:

Zur Kurzanzeige