Zur Kurzanzeige

dc.contributor.authorBreiding, Paul
dc.contributor.authorKohn, Kathlén
dc.contributor.authorSturmfels, Bernd
dc.date.accessioned2024-03-08T07:52:32Z
dc.date.available2024-03-08T07:52:32Z
dc.date.issued2024-02-27
dc.identifier.isbn978-3-031-51462-3
dc.identifier.urihttp://publications.mfo.de/handle/mfo/4118
dc.descriptionOberwolfach Seminar: Metric Algebraic Geometry 2322ben_US
dc.descriptionOberwolfach Seminar: Metric Algebraic Geometry 2322ben_US
dc.description.abstractMetric algebraic geometry combines concepts from algebraic geometry and differential geometry. Building on classical foundations, it offers practical tools for the 21st century. Many applied problems center around metric questions, such as optimization with respect to distances. After a short dive into 19th-century geometry of plane curves, we turn to problems expressed by polynomial equations over the real numbers. The solution sets are real algebraic varieties. Many of our metric problems arise in data science, optimization and statistics. These include minimizing Wasserstein distances in machine learning, maximum likelihood estimation, computing curvature, or minimizing the Euclidean distance to a variety. This book addresses a wide audience of researchers and students and can be used for a one-semester course at the graduate level. The key prerequisite is a solid foundation in undergraduate mathematics, especially in algebra and geometry. This is an openaccess book.en_US
dc.description.abstract[Open Access]
dc.language.isoenen_US
dc.publisherBirkhäuser Chamen_US
dc.relation.ispartofseriesOberwolfach Seminars;volume 53
dc.subjectAlgebraic Geometryen_US
dc.subjectDifferential Geometryen_US
dc.subjectData Structures and Information Theoryen_US
dc.subjectArtificial Intelligenceen_US
dc.subjectNumerical Analysisen_US
dc.titleMetric Algebraic Geometryen_US
dc.typeBooken_US
dc.identifier.doi10.1007/978-3-031-51462-3
local.series.idOWS-53
local.subject.msc13en_US
local.subject.msc14en_US
local.subject.msc53en_US
local.subject.msc62en_US
local.subject.msc90en_US


Dateien zu dieser Ressource

DateienGrößeFormatAnzeige

Zu diesem Dokument gibt es keine Dateien.

Das Dokument erscheint in:

Zur Kurzanzeige