Zur Kurzanzeige

dc.contributor.authorBaum, Helga
dc.contributor.authorJuhl, Andreas
dc.date.accessioned2016-09-23T15:48:23Z
dc.date.available2016-09-23T15:48:23Z
dc.date.issued2010
dc.identifier.isbn978-3-7643-9908-5
dc.identifier.urihttp://publications.mfo.de/handle/mfo/523
dc.description.abstractConformal invariants (conformally invariant tensors, conformally covariant differential operators, conformal holonomy groups etc.) are of central significance in differential geometry and physics. Well-known examples of conformally covariant operators are the Yamabe, the Paneitz, the Dirac and the twistor operator. These operators are intimely connected with the notion of Branson’s Q-curvature. The aim of these lectures is to present the basic ideas and some of the recent developments around Q -curvature and conformal holonomy. The part on Q -curvature starts with a discussion of its origins and its relevance in geometry and spectral theory. The following lectures describe the fundamental relation between Q -curvature and scattering theory on asymptotically hyperbolic manifolds. Building on this, they introduce the recent concept of Q -curvature polynomials and use these to reveal the recursive structure of Q -curvatures. The part on conformal holonomy starts with an introduction to Cartan connections and its holonomy groups. Then we define holonomy groups of conformal manifolds, discuss its relation to Einstein metrics and recent classification results in Riemannian and Lorentzian signature. In particular, we explain the connection between conformal holonomy and conformal Killing forms and spinors, and describe Fefferman metrics in CR geometry as Lorentzian manifold with conformal holonomy SU(1,m).en_US
dc.language.isoen_USen_US
dc.publisherBirkhäuser Baselen_US
dc.relation.ispartofseriesOberwolfach Seminars;Vol. 40
dc.titleConformal Differential Geometryen_US
dc.typeBooken_US
dc.identifier.doi10.1007/978-3-7643-9909-2
local.series.idOWS-40


Dateien zu dieser Ressource

DateienGrößeFormatAnzeige

Zu diesem Dokument gibt es keine Dateien.

Das Dokument erscheint in:

Zur Kurzanzeige