• English
    • Deutsch
  • Deutsch 
    • English
    • Deutsch
  • Einloggen
Dokumentanzeige 
  •   Startseite
  • 6 - Oberwolfach Seminars (OWS)
  • Oberwolfach Seminars
  • Dokumentanzeige
  •   Startseite
  • 6 - Oberwolfach Seminars (OWS)
  • Oberwolfach Seminars
  • Dokumentanzeige
JavaScript is disabled for your browser. Some features of this site may not work without it.

Variational and Information Flows in Machine Learning and Optimal Transport

Thumbnail
Datum
2025-07
Serie
Oberwolfach Seminars;56
Autor
Li, Wuchen
Schmitzer, Bernhard
Steidl, Gabriele
Vialard, François-Xavier
Metadata
Zur Langanzeige
OWS-56
Zusammenfassung
This book is based on lectures given at the Mathematisches Forschungsinstitut Oberwolfach on “Computational Variational Flows in Machine Learning and Optimal Transport”. Variational and stochastic flows on measure spaces are ubiquitous in machine learning and generative modeling. Optimal transport and diffeomorphic flows provide powerful frameworks to analyze such trajectories of distributions with elegant notions from differential geometry, such as geodesics, gradient and Hamiltonian flows. Recently, mean field control and mean field games offered a general optimal control variational view on learning problems. The four independent chapters in this book address the question of how the presented tools lead us to better understanding and further development of machine learning and generative models.
DOI
10.1007/978-3-031-92731-7
Collections
  • Oberwolfach Seminars

Mathematisches Forschungsinstitut Oberwolfach copyright © 2017-2024 
Kontakt | Impressum | Datenschutzerklärung
Leibniz Gemeinschaft
 

 

Stöbern

Gesamter BestandBereiche & SammlungenErscheinungsdatumAutorenTitelnWorkshop CodeSchlagwortenMFO Series IDMSCSnapshot SubjectMFO Scientific ProgramDiese SammlungErscheinungsdatumAutorenTitelnWorkshop CodeSchlagwortenMFO Series IDMSCSnapshot SubjectMFO Scientific Program

Mein Benutzerkonto

Einloggen

Mathematisches Forschungsinstitut Oberwolfach copyright © 2017-2024 
Kontakt | Impressum | Datenschutzerklärung
Leibniz Gemeinschaft