• English
    • Deutsch
  • English 
    • English
    • Deutsch
  • Login
View Item 
  •   Home
  • 6 - Oberwolfach Seminars (OWS)
  • Oberwolfach Seminars
  • View Item
  •   Home
  • 6 - Oberwolfach Seminars (OWS)
  • Oberwolfach Seminars
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Variational and Information Flows in Machine Learning and Optimal Transport

Thumbnail
Date
2025-07
Series
Oberwolfach Seminars;56
Author
Li, Wuchen
Schmitzer, Bernhard
Steidl, Gabriele
Vialard, François-Xavier
Metadata
Show full item record
OWS-56
Abstract
This book is based on lectures given at the Mathematisches Forschungsinstitut Oberwolfach on “Computational Variational Flows in Machine Learning and Optimal Transport”. Variational and stochastic flows on measure spaces are ubiquitous in machine learning and generative modeling. Optimal transport and diffeomorphic flows provide powerful frameworks to analyze such trajectories of distributions with elegant notions from differential geometry, such as geodesics, gradient and Hamiltonian flows. Recently, mean field control and mean field games offered a general optimal control variational view on learning problems. The four independent chapters in this book address the question of how the presented tools lead us to better understanding and further development of machine learning and generative models.
DOI
10.1007/978-3-031-92731-7
Collections
  • Oberwolfach Seminars

Mathematisches Forschungsinstitut Oberwolfach copyright © 2017-2024 
Contact Us | Legal Notice | Data Protection Statement
Leibniz Gemeinschaft
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesWorkshop CodeSubjectsMFO Series IDMSCSnapshot SubjectMFO Scientific ProgramThis CollectionBy Issue DateAuthorsTitlesWorkshop CodeSubjectsMFO Series IDMSCSnapshot SubjectMFO Scientific Program

My Account

Login

Mathematisches Forschungsinstitut Oberwolfach copyright © 2017-2024 
Contact Us | Legal Notice | Data Protection Statement
Leibniz Gemeinschaft