#### 1507c

## Mini-Workshop: Singularities in G2-geometry

##### Workshop

1507c##### Period

08 Feb - 14 Feb 2015##### Abstract

All currently known construction methods of smooth compact $\mathrm G_2$-manifolds have been tied to certain singular $\mathrm G_2$-spaces, which in Joyce’s original construction are $\mathrm G_2$-orbifolds and in Kovalev’s twisted connected sum construction are complete G2-manifolds with cylindrical ends. By a slight abuse of terminology we also refer to the latter as singular $\mathrm G_2$-spaces, and in fact both construction methods may be viewed as desingularization procedures. In turn, singular $\mathrm G_2$-spaces comprise a (conjecturally large) part of the boundary of the moduli space of smooth compact $\mathrm G_2$-manifolds, and so their deformation theory is of considerable interest. Furthermore, singular $\mathrm G_2$-spaces are also important in theoretical physics. Namely, in order to have realistic low-energy physics in M-theory, one needs compact singular $\mathrm G_2$-spaces with both codimension 4 and 7 singularities according to Acharya and Witten. However, the existence of such singular $\mathrm G_2$-spaces is unknown at present. The aim of this workshop was to bring reserachers from special holonomy geometry, geometric analysis and theoretical physics together to exchange ideas on these questions.

##### Report

Workshop Report 2015,8##### Organizers

Anda Degeratu, Freiburg; Mark Haskins, London; Hartmut Weiss, München/Kiel##### EMS Reference

Degeratu Anda, Haskins Mark, Weiß Hartmut: Mini-Workshop: Singularities in $\mathrm G_2$-geometry. Oberwolfach Rep. 12 (2015), 449-488. doi: 10.4171/OWR/2015/8##### Oberwolfach Photo Collection

Open Workshop Photos### Preview

Mathematisches Forschungsinstitut Oberwolfach copyright © 2017-2020